I\ §
JA

/\\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A
A

A

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A\

P

) |

L

OF

) §

¥ \\\

AL

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
or—— SOCIETY

Critical Lines and Phase Equilibria in Binary Van Der
Waals Mixtures

P. H. Van Konynenburg and R. L. Scott

Phil. Trans. R. Soc. Lond. A 1980 298, 495-540
doi: 10.1098/rsta.1980.0266

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1980 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;298/1442/495&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/298/1442/495.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org
[ 495 ]

CRITICAL LINES AND PHASE EQUILIBRIA IN
BINARY VAN DER WAALS MIXTURES

By P.H. VAN KONYNENBURGYt anp R. L. SCOTT
Department of Chemistry, University of California, Los Angeles, California 90024, U.S.A.
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The van der Waals equation of state is used to determine phase diagrams for a wide
variety of binary fluid mixtures. The locus of the critical line in pressure-temperature-
composition space is determined exactly by solving a set of equations with the aid
of a computer.

The van der Waals constants am and by, for the mixture depend quadratically and
linearly upon the mole fractions xi: am = ZiZjxix3ay; and bm = Zix1byy. Mixtures
are characterized by three non-dimensional parameters: & = (byy— byy)/(byy + bs5),
€ = (gg 2" — a1y bs®) /(@11 b13® + 499 0357) and A = (ay, b1® — 2415/ b1y by + @99 b5?) [ (031 b33
+ @99 035%). The parameter /A can be related to the low-temperature enthalpy of mixing
and the parameter § to the difference between the gas-liquid critical pressures of
the pure fluids.

Most of the calculations are for molecules of equal size (§ = 0), but calculations
for a size ratio of two (§ = %) are also reported. Nine characteristic types of
critical lines are distinguished and these correspond to nine separate regions on a
A, {-diagram. Isobaric temperature-composition diagrams and pressure—~temperature
projections are given for one example from each region to illustrate the possible types
of phase equilibrium.

Special attention is given to the details of lower critical solution temperature
behaviour (type IV) such as is found in the system methane + n-hexane, to tricritical
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496 P. H. VAN KONYNENBURG AND R. L. SCOTT

points (symmetrical and unsymmetrical), to azeotropy, and to the possibility of
double azeotropy.

The phase diagrams calculated from the van der Waals equation seem to account,
at least qualitatively, for all but one of the varieties of phase equilibria found in
binary fluid mixtures: the low-temperature lower critical solution points in some
highly structured aqueous solutions of alcohols and amines.

[Introductory note. This article reproduces, largely unchanged, a major portion of the U.C.L.A.
Ph.D. dissertation of P. H. van Konynenburg (1968). Except for short extracts reported in other
papers (Scott & van Konynenburg 1970; Scott 1971), little of this detailed material has yet
been published. However, more than fifty copies of the dissertation were distributed and there
have been repeated references to the work in other articles and books (for example, Hicks &
Young 1975; Furman et al. 1977; Clancy et al. 1978), and the examples and classifications are
well, if not widely, known. The work reported here has continued at U.C.L.A. and has been
extended to other equations of state, and subsequent papers will need the detailed background
originally presented. After ten years, however, the subject has progressed and a failure to
mention any subsequent work, here and elsewhere, would be unfair to all concerned. On the
other hand, to present a completely revised paper would misrepresent the extent of our under-
standing in 1968. The text that follows derives primarily from chapters IT and III of the disser-
tation that are reproduced, essentially verbatim, except for some minor editorial changes and
a change of symbols (¢, 4, etc.) to conform to the usage in our 1970 paper. Substantive
comments and second thoughts that postdate the 1968 dissertation are always enclosed in
square brackets.]

1. INTRODUCGTION

The study of phase equilibria is historically one of the most important sources of information
about the nature of intermolecular forces in non-electrolyte liquids and their mixtures.
Many of the main features of vapour-liquid and liquid-liquid phase behaviour were already
well characterized experimentally during the early part of this century, but the theoretical
explanation of phase equilibria for a wide variety of substances and over a large range of
pressures and temperatures has lagged far behind. This paper presents theoretical studies
of phase equilibria in binary mixtures obeying the van der Waals equation, especially
liquid-liquid equilibria that can occur at high pressures.

The variety of fluid phase behaviour that occurs in binary mixtures can be qualitatively
discussed in terms of the changes in thermodynamic properties near critical points.

Upper critical solution temperatures (UCSTs) occur when a heterogencous (two-phase)
system becomes a homogeneous (one-phase) system when the temperature is raised. The
maximum temperature along the temperature-mole fraction (7, x) coexistence curve for
constant pressure is the UCST at this pressure. Lower critical solution temperatures (LCSTs)
occur when a homogeneous system becomes a two-phase system when the temperature is
increased. The LCST is at the minimum of the T, x coexistence curve. Thermodynamic con-
siderations of critical points yield requirements for the curvature of the mixing functions
plotted against x. At any critical point,

02G _ 0BGy _
(©x2 )T,p_—o’ (axa )T,p—‘o’ M

where G is the molar Gibbs free energy of the binary mixture.
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VAN DER WAALS MIXTURES 497

UCSTs are present in most systems that have large positive molar excess enthalpies HE.
In practice, systems with small positive values of HE or high melting temperatures may have
metastable UCSTSs that lie below a solid boundary [Dickinson et al. 1973]. LCSTs can occur
in systems with negative excess enthalpy if the excess entropy is sufficiently negative to make
the excess Gibbs free energy large and positive.

The phase behaviour of a one-component system can be described by any two of the variables
temperature, 7', pressure, p, and molar volume, V. For example, a p, T-phase diagram can
be divided into regions where the liquid or gas phases are stable, separated by two-phase lines.
The liquid-gas phase boundary (the vapour-pressure curve) ends at a gas-liquid critical point;
beyond this point there is no liquid-gas equilibrium. Unlike the vapour-pressure curve, the
solid-liquid boundary has no critical point.

To describe the phase behaviour of a binary mixture at least three of the variables T, p, Vn,
and x must be used, the most convenient being T, p, and x. On a p,T-plane each pure com-
ponent (designated 1 and 2 in order of increasing gas-liquid critical temperature) of a mixture
is represented by its vapour-pressure curve. Mixing of the two components adds a third
dimension: composition (expressed as the mole fraction x of component 2). The locus of the
critical points of a mixture (i.e. the points where two phases become identical in density and
composition) is represented by a critical line in p, T, x-space. In this paper only the projection
of the critical lines on the p, T-plane will be shown in two-dimensional figures.

Experimental binary-fluid phase diagrams can be classified into three main groups:

Class 1. Mixtures of two components with similar gas-liquid critical temperatures. In such
mixtures the critical points of the pure components are continuously connected by a critical line.

Class 2. Mixtures of two components with very different gas-liquid critical temperatures.
In these mixtures there is no continuous critical line joining the critical points of the pure
compone nts.

Class 3. Very complex mixtures exhibiting such phenomena as low-temperature LCSTs.
In this class the low-temperature phase behaviour results from strong specific interactions
between the two components. These interactions lead to a high degree of order in the
liquid mixture and thus cannot be represented by a ‘one-fluid’ equation of state such as that of
van der Waals.

Many examples of experimental binary-fluid phase diagrams have been discussed by
Rowlinson (1959, 1969) and by Schneider (1966). _

Of the many alternative theoretical approaches that attempt to explain the thermodynamic
properties of liquid mixtures, the earliest was that of van der Waals (1890). He applied the
empirical concept of corresponding states to mixtures by assuming that a mixture behaves
like a single fluid and, in particular, tied all prediction and discussion to his equation of state.
This approach played an important role in the early interpretation of phase diagrams and
critical lines in mixtures (van der Waals 1899, 1900, 1906-12; Kamerlingh Onnes ef al. 1900~
1907; van Laar 19o4-1910).

The results of the early workers showed that, although the van der Waals equation gives
only a qualitative description of the thermodynamic properties of liquid mixtures, it very rarely
yields physically absurd results. Because the equations for the calculation of critical lines are
difficult to solve, much of the early work was often sketchy and sometimes inaccurate, and
remained incomplete. With the availability of fast modern computers and renewed theoretical

interest in the ‘classical’ theory of dense fluids; the subject is being revived.
48-2
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498 P. H. VAN KONYNENBURG AND R.L. SCOTT

McKinnon (1967) made extensive calculations using this equation to predict vapour-liquid
diagrams and gas-liquid critical points at high pressures and excess functions at zero pressure.
His comparisons with experiment confirm that the van der Waals equation cannot provide a
good quantitative interpretation of the properties of mixtures. [See also Marsh ¢t al. (1970).]
However we shall show here that most experimentally observed types of phase phenomena in
binary mixtures (classes 1 and 2) can be produced from this equation of state. None of the
systems cited as examples is expected to obey the van der Waals equation in detail; only the
general (schematic) features of its phase equilibria can be predicted.

2. THE BASIC EQUATIONS

The van der Waals equation of state is

RT a
b= Tl VR (2)

where R is the molar gas constant. The parameter a is a measure of the attractive forces between
the molecules and the parameter 4 is a measure of the size (intrinsic volume) of the molecules.
If the conditions for the gas-liquid critical point in a one-component system,

(0p/WVm)p = 0, (%/OVE)r =0, (3)
are applied to (2), the critical temperature, pressure and molar volume are obtained as functions
of @ and b: Te = Ja/Rb, p° = da/b, VS = 3b. (4

For a binary mixture of components 1 and 2, van der Waals replaced a and 4 by
a(x) = (1—x)% ayy +2(1 —x)x a5 + x%ay,, (5)
b(x) = (1—x)% by +2(1 = )% by + £%by,, (6)

where x is the mole fraction of component 2. The constants 4;; and ay, are measures of the
attractive forces between pairs of molecules of the pure components 1 and 2, respectively,
and ay, is the corresponding parameter for the interaction between molecules 1 and 2. The
constants by;, by and by, are size parameters (proportional to volume) for the pure components
and for the mixed pairs. Equations (5) and (6) imply random mixing of the two components.
[These ‘one-fluid’ equations do not conform to the strict statistical mechanical definition of
‘random mixing’, in which, for a given x, the radial distribution function ges(r) must be the
same for all pairs. This point has been discussed by Rowlinson (1970) and by Scott (1970).]
If 4,5 is chosen as the arithmetic mean of by; and b,, (as did van der Waals), i.e.

biy = §(byi+bs2),
then b(x) = (1—x) by +xbyy. (7)

A theoretically sounder approximation for by, [for spherical molecules] is the Lorentz expression,
by = [%(b}}1+b§2)]3, but (7) must lead to qualitatively similar conclusions and for simplicity
it has been used for all of the calculations. [Since the parts of the dissertation presented in
detail in this paper are restricted to mixtures of molecules of the same size, the distinction
between these two approximations disappears: by, = by = bg,.]
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VAN DER WAALS MIXTURES 499

A liquid is almost unexpanded (Vi ~ b) at very low temperatures or at very high pressures.
IfVim ~ by, Vam ® by and V, ~ b, then, by using (7), it follows that VE ~ 0. In practice,
systems are usually studied at low (reduced) temperatures, not at extremely high pressures.
For this reason the molar heat of mixing (excess enthalpy) in the unexpanded state (V, =~ 0)
is denoted by HE(T = 0) and can be shown to be

2a a x(1—x) by b

HET=O=(@— 12+__2_2) 12 8

m ) bly bibey  03y) (1—x) by +xbyy (8)

If ay, is replaced by the geometric mean of a;; and ay,, then this expression is the same as one

used by van Laar (1910) and is closely related to those derived later by Scatchard (1931) and
by Hildebrand & Wood (1933).

It is convenient to describe the mixtures with three new parameters, §, ¢, and 4, which are

defined b

chned by £ = (byo—b11) /(b1 +bsa), (9)

oy a1y 11 | Qg9 ‘
— [Z22_%n L 22 10
e (G-) (3 3) (10)

2a a a a

A= (@____1_2_+_2_2)/(£+_2_2)_ 11
RN AV (1)

[These are the definitions that we introduced later (Scott & van Konynenburg 1970). The
original parameters, 7 = (dgy —ay;) /(@11 +@95) and A = (ay; — 2ay5 + ay5) /(447 + a55), proved in-
convenient when by; # byy. For by, = by, (§ = 0), of course, = {and 4 = A.] For by, = by,
g and A are related to the difference in critical temperatures or pressures of the pure com-
ponents and to HE(T = 0), respectively, as seen in (4) and (8).

For equal-size molecules in the limit p = oo, 1}, = b, the close-packed system has ideal
entropy of mixing (SE = 0) and the excess free energy becomes ‘

GE = HE—TSE = HE(T = 0),
which, by using (8), can be written as
G = x(1—x)(ay + a — 2a3,) /0. (12)

Guggenheim (1952) has called systems obeying (12) ‘simple mixtures’.
If the conditions for a critical point

(aszE) ___RT
o Jp,  x(l—x)
(63G,§> __RT(1-2x)
o )p,  #(1—x)

are applied to (12) it is found that

x¢ =1 1

B (13)

(Gm)® = 3RT* = %(411_2‘112"‘“22)/[7-J

For convenience this critical temperature is written in a reduced form, 7% = 7°¢/T¢ (where
Ty, the gas-liquid critical temperature of component 1, is 5%a;;/Rb). In terms of ¢ and A this

becomes (for £ = 0) TS = 224/(1-¢). (14)


http://rsta.royalsocietypublishing.org/

/ y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AR °

a
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

500 P.H. VAN KONYNENBURG AND R. L. SCOTT

This critical point at infinite pressure, Cp, (7%, 0o, §), will be used to describe the course of
some critical lines in subsequent sections.

For the molar Helmholtz free energy of a binary van der Waals mixture, using as a reference
state (superscript ©) the state of the ideal unmixed gases at a molar volume Vg, one obtains

A (T, Vy) —AR(T, V) = —a/Vu = RT'In [(V, =)/ V3]
- +RT[(1—x)In (1—x)+xInx]. (15)

The conditions for a critical point in a binary mixture are moest compactly expressed in
terms of the Gibbs free energy of the mixture (1). However, since it is not convenient to calculate
the Gibbs free energy by using the van der Waals equation, these equations are transformed
into the equivalent equations for the Helmholtz free energy:

AZVAzw—'AZVw = 0, (16)
A3VA%ac - 3A2V:z: AVw A2a: + 3AV2:¢ A%/w '—A3:1: A2VAVw = 0: (17 a)
AawAgV - 3AzV:c AVw AZV + 3Aw2VA%7:1: - A3VA2w AVac =0, (17 b)

where the abbreviated notation used for multiple differentiation is that of Rowlinson (1959,
1969)3 Apamr = (an+mAm/anx ame) T

Only two of these three equations are independent. By tedious but straightforward algebra
it is possible to eliminate the temperature and obtain an equation for the critical line in terms
of 7, and . For convenience the final equations are written in terms of reduced variables, the
main ones being 7y = T/TY, pr = p/p5, Vy = Vuo/b. (Note that the reduced volume defined
here is not the conventional van der Waals reduced volume V,,/V5 = §V,,/5.)

Most of the calculations were done for by, = by, (§ = 0), for which the equation for the
critical line (given in Appendix A) is seventh order in both V; and x. For the gereral case
(by, # byp) the corresponding equation is eighth order in V; and fifteenth order in x.

For a chosen value of x the roots of the final equation appear to lie between V,,/6 = 1 and
Vio/b = 3 (that is, between the close-packed volume and the volume corresponding to the
critical point in a one-component system). Each root calculated was used to compute the
reduced temperature and pressure of the critical point of the mixture.

In the mathematical formulation there is essentially no difference between gas-liquid and
liquid-liquid critical points for mixtures; both are points of incipient instability and the
characteristic densities of the phases involved do not change the thermodynamic description.
Since the van der Waals equation is continuous through metastable and unstable states, all
gas-liquid and liquid-liquid critical points, whether on stable, metastable, or unstable portions
of a critical line, are calculated by our procedure. The stable part of a critical line may end at
an upper or lower critical end point where the critical line intersects a three-phase line. To
determine such points and other details of the 7, p,x-phase diagram it becomes necessary to
use all the conditions applicable to two conjugate phases a and B in equilibrium:

T = Tﬁ) = Pﬁ: no= /1"13’ Mg = Iug’ (18)

where g, and p, are the chemical potentials of the two components. Our procedure was to
plot, for fixed 7" and p, the logarithms of the activities A, and A, against each other and deter-
mine the point of intersection. Details are given in Appendix A.
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VAN DER WAALS MIXTURES 501

3. AZEOTROPY

The van der Waals equation predicts that azeotropy occurs for a fixed value of { when 4 is
sufficiently positive or negative. First a general equation for the azeotropic line will be derived
and then the special features for by, = b,, (§ = 0) will be discussed.

For two phases o and B (here, liquid and vapour) to be in equilibrium at an azeotropic
point, one adds to the usual conditions for phase equilibrium (18) the additional condition
x* = xP. Since Gy = (1—x) uy+xp, and py = Gy —%(0Gy /%)y, and py = Gu+(1—x)
(0Gw /%), p, it follows that if x* = &8, Gy = G and (0GL/0x)p , = (0GB /0x)p . As
mentioned before, it is easier to use the van der Waals equation with the Helmholtz free
energy than with the Gibbs free energy. Since, quite generally, (0Gm/0x); , = (04m/0%) 1 pps
it follows that at an azeotropic point

(045./0%) 7,y = (04%/08) 7, ko, (19)
When combined with (15) this expression yields
RTY o  RTY o
Ve—b Ve VE-b VE

where @’ = da/dx and &' = db/dx. The requirement of equal pressures (p* = pP) permits the
use of (2) to eliminate R7"/(V,, —b), which reduces the foregoing to a general equation for the

( 1 + 1 )[d(lnb)]_d(lna)=0

azeotropic curve:

Va/bw V8 /bn dx dx ’ (20)
1 1 —28\ | 2(l-wd)
o (Vg,/bm—‘_V,‘,’l/bm) (1—w§)+1—-w§-—2z/1 =9

where w = 1—2x and z = »(1—x) = (1 —w?).

(@) The special case £ = 0
When by; = by, db/dx = 0 and thus de/dx must vanish or, setting £ = 0in (20), {—wA = 0.
This is equivalent to writing for the composition x4% of the azeotrope

AZ — ‘"% A4-¢ (21)

Ay + g9 — 20,5 24

The azeotropic behaviour is seen to appear at x = 0 when 4;, = a3, and at x = 1 when
@13 = Qyy. From the diagrams in subsequent sections it will be clear that these conditions can
be interpreted (for a,,/a;; > 1) as the onset of positive and negative azeotropy, respectively.

Since the azeotropic composition is independent of temperature and pressure, the azeotropic
curve on a pr, 7y phase diagram scales directly with the vapour-pressure curves of the pure
components. These curves end at a gas-liquid critical line at p, = 7T, = a(x2%)/ay, =
(24— §2—42)/24(1 - §). Calculations show that a cusp appears in the gas-liquid critical line
at this point, a curiosity that is an artefact of the case £ = 0. Experimental diagrams show that
azeotropic lines meet critical lines tangentially (see, for example, Rowlinson (1959, 1969)), a
feature confirmed by all our calculations where & # 0.
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502 P. H VAN KONYNENBURG AND R. L. SCOTT

4. PHASE DIAGRAMS FOR BINARY MIXTURES OF EQUAL-SIZED MOLECULES

The possible phase diagrams predicted for van der Waals mixtures according to the pro-
cedures outlined in the previous section and in Appendix A are classified according to the
nature of their p,7T-projections. Mixtures in which the gas-liquid critical points of the pure
components, C;(73,p,, x = 0) and C,(7,,p,,x = 1), are connected by a continuous critical
line belong to class 1; mixtures in which there is no continuous critical line connecting C; and
C, belong to class 2. (Here and subsequently we use the notation 73, p, Ty, p, and 7 for the
reduced properties at C;, Gy and Cp, i.e. Ty = T¢/T¢ = 1, p, = p3/p5, etc.

The phase diagrams are further distinguished by the presence or absence of three-phase
lines (L,L,G) and azeotrope lines (positive and negative) and by the way in which critical
lines meet these. Critical lines may end in various ways. They end at the one-component gas—
liquid critical points C, and C, and at the limiting upper critical solution point Cy, (72,00, x = })
of a close-packed (V, = b) ‘liquid-liquid’ system. In addition, critical lines may terminate at
the ends of three-phase lines, at upper or lower critical endpoints (UCEPs or LCEPs). Azeotrope
lines, if present, end at high pressures on critical lines (tangentially in real systems, at mathe-
matical cusps in the critical line for the special case by; = by,).

The nine types of phase diagrams (for molecules of equal size, i.e. b;; = by, or £ = 0) are
represented by the regions on the /A-{ grid shown in figure 1. The types are as follows.

Class 1

I. One critical line: G, to C, (G-L).
I-A. The same as I, with the addition of a negative azeotrope.
II. Two critical lines: C; to C, (G-L); Cx to UCEP (L-L).
II-A. The same as II, with the addition of a positive azeotrope.

Class 2

ITI-HA. Two critical lines: C; to UCEP (G-L); Cn to G, (L-L to G-L). A three-phase
line runs from a UCEP to p = 0, T = 0 at lower temperatures than the one-
component vapour pressure curves, producing ‘heteroazeotrope’ behaviour.

III. The same as ITI-HA except that the three-phase line lies between the two one-
component vapour-pressure curves.
IV. Three critical lines: C; to UCEP (G-L); LCEP to C, (L-L to G-L); Cn to UCEP
(L-L).
V. Two critical lines: C; to UCEP (G-L); LCEP to C, (L-L to G-L).
V-A. The same as V, with the addition of a negative azeotrope.

In addition there are two subregions, I1Iy, and ITI-HAn, that differ from IT Iand ITI-HA
only in that there are minimum and maximum pressures in the critical line going from Cp, to
C,. Therefore at certain fixed pressures there will be three critical temperatures, two UCSTs
and one LCST.

Two combining rules that relate a;, to a;; and a,, are represented by lines on figure 1: The
geometric mean (g.m.), which is frequently used in theories of mixtures for which

a1 = (auazz)‘}: (22)
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VAN DER WAALS MIXTURES 503

is a circular curve [(1-4)2 = (1—-¢) (1+&)] with centre at 4 = 1, { = 0 (—-—). The
arithmetic-mean line (a.m.) is the abscissa (4 = 0), where a;, = }(ay; +ay,).

Full lines on figure 1 are boundaries separating regions having characteristic pr,Tr, ¥-phase
diagrams. When a dashed boundary is crossed, only minor features of the phase diagrams
change. The dotted curve is a mathematical double-point curve and represents the locus of
points where two critical lines meet and exchange branches. This intersection is never in a
stable region of the phase diagram and is thus of no physical importance; for this reason it
will not be considered further here. When the dashed line labelled 7% = 7, is crossed,

ap =0
1 T T T 7T T | — T T
- -‘
L 1l
1
L /
II-HA F
L o> /4
4 e
9, -1
! S E T -7,
~ -
1!]\;7\ N _ - - / ! -
S 11 /'gm
T -~ S s 7]
- d
L I1I-A S R
~
- II - [[[ S 4 ©
/,/' N2 ~ I
O ="ttt +——1 o
v a.m S
{— ]
L 4§
L I -
v
" RN - . . N\
> ’ A
L J N ~ - : ‘
T V-A . \ .
Ficure 1. Diagram of phase behaviour for equal size Ficure 2. Values of { and A for which critical lines
molecules. Nine major regions of characteristic have been calculated to locate the main region
b, T-phase diagrams are separated by the bound- boundaries and construct phase diagrams. Phase
aries ( ). [The figure is incomplete in the diagrams or p,T-projections for the systems X
region = —0.08 to 0.08, A = 0,35 to 0.48; this are shown in subsequent figures.

‘shield region’ is shown in figure 38.]

with increasing A, T3 becomes greater than 7, (and, for { > 0, greater than 7; as well).
[When fluid-fluid phase separation occurs at temperatures higher than the gas-liquid critical
point of either pure component, the phenomenon is known as ‘gas—gas immiscibility’. More
than forty such binary systems have now been found; Schneider (1970) has contributed an
authoritative review. For fits of simple equations of state to such phenomena see McGlashan

et al. (1973, 1977) and Scott (1973).]
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504 P. H. VAN KONYNENBURG AND R. L. SCOTT

The diagram in figure 1 is closed at the top at the limit ¢;, = 0, where there are no 1-2
attractive forces, but there is no obvious physical limit at the bottom of the diagram for strong
attractive forces. However the part shown probably includes all physically reasonable negative
values of 4. (The curved full-line boundary separating regions I-A and V-A and the dotted
double-point curve intersect the A-axis (§ = 0) at A4 = —2.120 and - 2.806, respectively.)
The dashed curved boundary between IIIn, and III and the full-line boundary between IV
and III,, approach the {-axis asymptotically. [This last statement is now known to be in-
correct. The IV-TII, boundary ends at § = 4/2/2 = 0.7071, 4 = 0 and the ITI,-III boundary
ends at { = 3,/2/5 = 0.8485, A4 = 0.] The whole diagram is symmetrical with respect to
reflexion about the A-axis. This mirror image results by interchanging the roles of a,, and ay;.
Only the case { > 0 is shown.

[This ‘master diagram’ (figure 1) is incomplete for a small area in the region 4 = 0.35 to
0.48, ¢ = —0.08 to 0.08, where there are phase diagrams of even greater complexity, We found
some of this complexity when we calculated critical lines and phase diagrams for systems with
¢ = 0, but the full nature of this ‘shield’ region was first outlined by Furman et al. (1977) for a
symmetrical model and then modified for a van der Waals binary mixture by Furman &
Griffiths (1978). Further comments on the ‘shield’ region will be found in section (44):
‘Symmetrical systems, { = 0, £ = 0°.]

The curved boundaries on figure 1 (apart from the g.m. curve) were obtained by plotting
cither pr,7r- or Ty x-diagrams of the critical lines depending on the boundary in question.
The accuracy with which each boundary was determined varies. In figure 2 are shown all the
points for which calculations were made. [Certain regions, particularly those in the vicinity
of { = 0 and those in the vicinity of the II-III boundary have been studied in greater detail
since 1968.] Usually many calculations were made in each region over the whole composition
range (at least twenty-nine values of x and usually more). Most of the calculations were made
at points close to the boundaries where changes in the type of phase diagram occur.

Van Laar (1905) calculated the intersection of the double-point curve with the geometric-
mean curve (g.m.) and our results correspond closely with his (a,,/a, = 2.89 compared with
our value of 2.887). [At this point a,,/a,, can be shown analytically to be exactly (49 +204/6)/
(17+12,/2) = 2.88455.] The geometric mean combining rule (22) was invariably used in the
early work and p, T-phase diagrams in regions IT and III were drawn, at least schematically,
by van Laar (1905). [The reader who would study van Laar’s voluminous papers should be
warned that, while his mathematics was usually impeccable, the difficulties of numerical
calculation in the days before electronic computers made it impossible to calculate accurately
more than a few points. Consequently the curves drawn in his papers are frequently quanti-
tatively, sometimes even qualitatively, wrong. Moreover, although many errors in figures in
earlier papers are corrected in later papers, no mention is ever made of the fact that the earlier
figures were wrong.]

(a) Some calculated phase diagrams

The simplest phase diagrams are found in regions close to the origin of figure 1 (class 1).
When A or ¢ or both have large values (positive or negative) the diagrams are more complicated
and belong to class 2.

Critical lines are shown as dashed lines and pure vapour-pressure curves and three-phase
lines as full lines. Because of the condition by; = b,,, the vapour-pressure curve of component 2
(labelled 2) scales directly with the vapour-pressure curve of component 1 (labelled 1) by the
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VAN DER WAALS MIXTURES 505

factor ayy/ay, (= (1+&)/(1—¢)). An azeotrope line (labelled (AZ)) scales in the same way by
the factor previously noted, a(¥2%)/ay, = [24 —§2—A%]/[24(1—§)]. The coordinates of the
pure gas-liquid critical points C; and C; are (1, 1, 0) and (ay5/ay;, as5/a45, 1).

For each of the classes of calculated phase diagrams there are corresponding examples in
experimentally determined systems. Some of these are cited in subsequent pages; they are
qualitatively similar, although of course none satisfy the special condition § = 0.

x=050

- ==o~- 070

3F 080 e
s/

P

1 | 1 " J

0 1 2 3
. T:
Ficure 3. Reduced pressure-reduced temperature (p,,7T;) projection of a type-I phase diagram (¢ = 0.50;

A4 = —0.30, —0.05). One critical line: C; to G, (G-L). In this and subsequent figures a dot on the dashed
critical line is a calculated point for the mole fraction x indicated.

Class 1 diagrams
Type 1: one critical line: Cy to Cy (G-L)

The simplest possible behaviour is found in region I of figure 1. Two examples are shown
in figure 3. For clarity the same value of { has been chosen for both cases so that the vapour—
pressure curves of the less volatile components in each mixture coincide. The composition is
given at intervals along the critical line for 4 = —0.05.

For the diagrams in figure 3, when the gas-liquid critical line has positive slope it represents
the locus of LCSTs and when the slope is negative the critical points are UCSTs. The phase
behaviour is more clearly understood from the Tt,x-phase diagrams for a series of constant
pressures given for A = —0.05 in figure 4. For pr < 1.00 there are no critical lines at any
value of 7t but there are two vapour-pressure curves. A typical example is shown at pr = 0.60.
At pr = p; = 1.00 there is a critical point at ¥ = 0, Ty = 1 (marked with a cross on the diagram),
and the two-phase region becomes detached from the x = 0 side as the pressure is further
increased in the succeeding cases. The diagram then shown a gas-liquid LCST at the minimum
in the 7%,x-loop. At pr = p, = 3.00, the two-phase region becomes detached from the x = 1
side as well. At p, > 3.00, gas-liquid UCSTs appear as shown at pr = 3.15. The LCST and
UCGST converge, as the pressure is increased, until at p; = 3.23 they coincide. At still higher
pressures there is no fluid—fluid equilibrium over the whole temperature range. (Restriction
to the van der Waals equation does not allow the possibility of solid—fluid equilibrium.)
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506 P. H. VAN KONYNENBURG AND R. L. SCOTT

Within the dashed curve close to the origin of figure 1 the gas-liquid critical line has no
maximum pressure; there are only LCSTs in this case and a two-phase region can exist only
for pressures less than pr = p,. The critical line for 4 = —0.30 (figure 3) has a slight dip close
to C,; this feature is present in some diagrams close to regions of azeotropy.
3r Tr “r a4 r q
p=060 1.00 L 1.50

0 10 10 10 1

x
Ficure 4. Reduced temperature—mole fraction (7%,x) isobars for the type-I system of figure 3
(€ = 0.50, 4 = —0.05).

Many experimentally determined systems are of the simple type I, usually, although not
necessarily, with a maximum pressure along the critical line, for example, CO,+ O,, Ar + Kr,
N, +O,, C,Hy+n-C;Hyg. [Some of these have positive heats of mixing and one suspects that,
if the solid phase had not intervened, upper critical solution phenomena would have been
observed at low temperature; if so, such a system is really type I1.] References for these and
subsequent examples may be found in reviews by Rowlinson (1959, 1969) and by Schneider
(1966).

[For certain values of ¢ and 4 it is possible to have type I (or II) systems where the critical
line starting at C, goes initially to higher temperature and pressure before bending around to
go to C;; this means that liquid-liquid phase separation occurs at temperatures higher than
the gas-liquid critical temperature of either pure component, so Scott (1973) has suggested
that this phenomenon be called ‘gas—gas immiscibility of the third kind’. Examples are
HC(l + (C,H;),0 and cycloheptane + tetraethylsilane (Hicks & Young 1971).

[It is a feature of van der Waals-like equations of state that at C, the initial slopes d 7'/dx,
and dp/dx, along the critical line can be positive or negative, but that a positive d77/dx,
cannot be associated with a negative dp/dx,. (Equivalent conditions apply at C,.) At least one
experimental system, SO, + CH3Cl, appears to violate this condition. ]

Type I-A : the same as type I, with the addition of a negative azeotrope

As mentioned in §3, negative azeotropy first appears at the boundary a;, = a,, (4 = —§).
An example of a phase diagram in region I-A is shown in figure 5. The cusp in the critical
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VAN DER WAALS MIXTURES 507

line where it joins the azeotrope line is clearly demonstrated. The slopes of both branches of
the critical line are positive and imply LGSTs.

T, x-diagrams for a series of pressures are given for this system in figure 6. For p. < p, = 1.00
there are no critical points (as in region I), and the azeotrope vapour-liquid diagram spans
the whole composition range. At pressures greater than p, = 1.00 an LCST appears at low
composition, and greater than pr = p, = 1.222 a second LCST appears on the other branch.
Finally at p, = 1.295 the two critical points both occur at the azeotropic point. This is not the
only way in which an azeotrope can disappear in region I-A; another way will be demonstrated
as an example in region V-A. Experimentally it has been shown that the azeotrope line

150
XM= (667

1.0F

.
1.5

.

FIGURE 5. p,, T,-projection of a type-I-A phase diagram ({ = 0.10, 4 = —0.30).
One critical line, G, to C, (G-L); one negative azeotrope line.

1.50~ - - ’ B - —l
p. =080 1.00 1.10

1.25F b - h -/\—
100 /_\— /_\_ — |

T, 0.75 1 1 1 1 1 | | i 1 1 | i
l 50 [ T r— - - -

1.222 1.25 1.295
X

1.25 /\ - /\ L _
1.00 B - 4 L _

0.75 | | 1 l L1 1 1 1 L 1 1
1 0 1 0 1

x

Ficure 6. T,,x-isobars for the type-I-A system of figure 5 ({ = 0.10, 4 = —0.30).
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frequently disappears at ¥ = 0 or ¥ = 1; this cannot happen for £ = 0 because the azeotropic
composition is independent of pressure and temperature, as we saw in a preceding section.
An example of type I-A behaviour is the experimental phase diagram for the system

HCI + (CH,),0. r
8._.
\\\Q;/‘\
A |
—
< 2
N b
olm
2
= O
L O i
=w
=l ()
22 F
=0
T
-9
025 0
<O
L
9z ‘
E< FIGURE 7. p,, T,-projection for a type-II system (§ = 0.473, A = 0.105). Two critical lines: C, to C, (G-L); G, to
nE UCEP (L-L; p, = 0.553, T, = 0.911, x¢ = 0.0072, V¢ = V®/b = 9.56, x'* = 0.424, V1= = L/} = 1.25).
3 T ar 1r .
- 4+ UCEP 4 4+ -
p = 040 0.553 0.65 1.00
ol .
1/
S S TR T [ S T 1 L1 T S B
T, 0 .
” ’r il A0 T T
P& B 1.50 JL 2.80 1L 3.20 4L 3.24 4
~d
) X
2 b 2+ 1 F -1 / -1 - -
<> : It 1t it —
ok . - 4L 4t -
4 a :/—‘x i X X X:
SSH®) \~ L/ \— —/ \~ —/ o~
T O N T R TN T St T S [T TR S
0 10 10 10 1
= .

Ficure 8. T,,x-isobars for the type-II system of figure 7 ({ = 0.473, A = 0.105).

Type I1: two critical lines: Cy to Cy (G-L), C,, to UCEP (L-L)
An important feature of figure 1 is that for positive values of 4, liquid-liquid phase separation

must always occur at a sufficiently low temperature (although in experimental systems the
formation of a solid phase may hide this). In region II the phase behaviour is similar to that
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of region I but as seen in figure 7 there is a second critical line, the locus of liquid-liquid UCSTs
starting from Cun (75, o, %). This critical line continues to low pressure until it is terminated
at a UCEP where a gaseous third phase appears. A three-phase line (L,L,G) continues from
the UCEP to pr = T = 0. The gas-liquid critical line can be interpreted as in region I.

A series of T, x-diagrams for this system are given in figure 8. The three-phase line always
lies between the vapour-pressure curves of the two pure components. This is illustrated for
pr = 0.40. For small T; two liquids are in equilibrium over most of the composition range.
The two liquid phases are in equilibrium with a gaseous third phase at the horizontal three-
phase line. The temperature along the liquid-liquid critical line shown in figure 7 decreases
with increasing pressure. However, in other cases, the temperature along this critical line first
decreases and then increases with increasing pressure. Obviously, whenever T'%, the temperature
of the ‘liquid-liquid’ critical point at infinite pressure, is greater than the temperature of the
UCEP, there must be some pressure range over which the temperature along the liquid-liquid
critical line increases.

An experimental example of a type-II phase diagram is the system CO,+n-CgH,g.

b

0.5f

Ficure 9. p,, T;-projection for a type-II-A system ({ = 0.184, A = 0.300). Two critical lines: C; to G, (G-L);
C, to UCEP (L-L; p, = 0.795, T, = 0.941, x% = 0.313, V¢ = 5.53, x% = 0.605, VI = 1.633). One
positive azeotrope line (which joins two three-phase lines at p, = 0.41, T, = 0.79).

Type II-A: the same as type II, with the addition of a positive azeotrope

Positive azeotropy has already been shown to begin at the boundary a4, = a3, (4 = §) in
figure 1. True positive azeotropic behaviour exists only in region II-A and an example is
given in figure 9. The azeotropic effect is small here; the values 4 = 0.30 and { = 0.184 were
chosen so that some of the other features would be clearly shown. Positive azeotropy is always
limited azeotropy because the azeotrope line must disappear at small pressures at an endpoint
(marked with a cross, x) where it intersects a three-phase line (SLG or L,L,G in real systems;
only L,L,G when the van der Waals equation is used). If 4 were decreased, with ¢ constant,
this endpoint would occur at still smaller pressures and it would be difficult to locate. For this
example, the UCEP is, accidentally, very close to the vapour—pressure curve, 1, and is also
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marked with a cross. Galculated 7%, x-diagrams are given for this example in figure 10. Since

the azeotropic and three-phase lines are so close to the vapour-pressure curve of component 1,

details are given in enlargements of the region around the azeotropic composition.
The temperature along the branch of the three-phase line that exists below the azeotrope
endpoint is lower than that of either of the one-component vapour-pressure curves. At these
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Ficure 10. T, x-isobars for the type-II-A system of figure 9 ({ = 0.184, A4 = 0.300).
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low pressures, such as at pr = 0.35 (figure 10), there is a constant-boiling mixture, the liquid
phase being heterogeneous (for example steam distillation). This behaviour is described as
‘heteroazeotropy’.

An experimental example with positive azeotropy giving a type II-A phase diagram is the
system GO, + C,Hg, although the low temperature Gy—~UCEP critical line is not seen (pre-
sumably hidden below the melting curve).

Class 2 diagrams

In this section the possible phase diagrams in which there is no continuous stable critical
line joining the gas-liquid critical points (C; and G,) of the two components will be examined.
They will be presented roughly in order of decreasing /1.

x=07"
\

\

1.5F 0.8

0.9\'\
\

1.0
b

0.5

Ficure 11. p,, T.-projection for a type-III-HA system ({ = 0.111, 4 = 0.444).
Two critical lines: C, to UCEP (G-L, x, ~ 0.33); C,, to C,.

Type ITI-HA : two critical lines: C, to UCEP (G-L), C, to C, (L-L to G-L)

A three-phase line runs from a UCEP to p = 0, T = 0 at lower temperatures than the one-
component vapour-pressure curves, producing ‘heterozaeotrope’ behaviour.

At the boundary between regions II-A and III-HA the low-temperature liquid-liquid
UCGST critical line moves to high temperature and connects with the gas-liquid critical line at
the end of the azeotropic curve. The result is that in region III-HA the critical line originating
at C, continues to Cm. The critical line beginning at C, ends at a UCEP.

Examples from region III-HA and the subregion III-HA, are given in figures 11 and 13.
Above the dashed line labelled T'% = T}, on figure 1, the critical temperature at infinite pressure
is greater than the gas-liquid critical temperature of the less volatile component 2. In this
region the critical line originating at C, can increase monotonically in temperature as the
pressure increases or it can have a minimum temperature. (The maximum pressure in the
C,—~UCEP line does not appear in all ITI-HA diagrams; for example at { = 0.30, 4 = 0.40,
pr increases monotonically from UCEP to C,.)

50 Vol. 2¢8. A
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512 P. H. VAN KONYNENBURG AND R.L. SCOTT

In the regions III-HA and III-HAp, the three-phase line lies at a lower temperature than
the vapour-pressure curve of the pure component 1 and continues up to the gas-liquid critical
line where it ends at a UCEP. This example might be called ‘absolute heteroazeotropy’ by
analogy with the azeotropy nomenclature. A series of 77, x-diagrams is given in figure 12 for
the pr,7r-diagram in figure 11. Figure 13 shows an example close to the boundary between
regions III-HA,, and II-A. The subScript m on the region label implies that a maximum
and a minimum appear in the gas-liquid critical curve before it continues to Cm.

1.3 W r '1 - q
L R=0.8 C _

1.3r h r 7

0.9

0.7

0

1.5+

1.0F
b

Ficure 13. p,, T,-projection for a type-III-HA  system ({ = 0.111, A = 0.400). Two critical lines: C; to UCEP;
C,, to minimum pressure, minimum pressure to maximum pressure, maximum pressure to G,.
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VAN DER WAALS MIXTURES 513

[At the time the foregoing was written, in 1968, we were apparently convinced that ordinary
azeotropy ceased at the boundary between II-A and what is labelled III-HA. This does not
now seem to be required. Whenever A4 > |{| there is an azeotrope line that ends on a critical
line. The question is whether this point lies on a stable, a metastable, or an unstable part of
the critical line; only if this part of the critical line is stable will the azeotrope appear in the
equilibrium diagram.

[Whenever there is a continuous critical line from one gas-liquid critical point to the other
(Cy to G,), it is (except for type-IV systems to be discussed later) stable over its entire length;
consequently there must be a stable azeotrope line of non zero length in all systems belonging
to region II-A. The situation in the region labelled ITI-HA is less clear. The azeotrope line
must end on the critical line that starts at C,, but its end could be at a point on a metastable or
unstable extension beyond the UCEP. It now seems to us that there must be a region adjacent
to the II-A and III boundaries in which the low pressure heteroazeotrope diagram (for
example, figure 10, pr = 0.35) changes to an azeotrope diagram (for example, figure 10,
pr = 0.60) followed at higher pressures by a splitting of the azeotropic diagram into two
separate loops with critical points. At a sufficient distance from these boundaries, the azeotrope
line will shrink to zero and only heteroazeotropic phase diagrams (for example, figure 11) will
exist. To determine the extent of this region will require some detailed calculations that we
have not yet made.]

x=0.60"+_
070",
3+ - 0.80\\

0.90",

b

0

FIGURE 14. ,, T,-projection of a type-III phase diagram ({ = 0.428, A4 = 0.257). Two critical lines: G, to UCEP
(G-L; fy, = 1.108, T, = 1.055, x5 = 0.060, V¥ = 2.87, #» = 0.932, V¥ = 1.18); C,, to C,.

Type II1: the same as type III-HA with the three-phase line lying between the two
one-component vapour-pressure curves

When the boundary a;, = a;; (4 = §) is crossed from region III-HA into III, the three-
phase line changes its position relative to the pure vapour-pressure curve of component 1,
moving to a higher temperature between the curves for components 1 and 2. Figures 14 and
15 show an example from region III and how the three-phase line always ends at temperatures

50-2
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514 P. H VAN KONYNENBURG AND R. L. SCOTT

and pressures greater than those at C;, a UCEP. Above the UCEP the phase behaviour is
exactly the same as in region ITI-HA.

The mutual solubility of the two components increases when passing from region III into
I11,, at constant . Figure 16 illustrates this trend ; the insolubility at high pressures has moved
to lower temperatures. Again the subscript m on the region label implies 2 maximum and a
minimum in the critical line. At pressures between the maximum and minimum pressures
there are two regions in the 7r,x-phase diagrams as shown in figure 17. At the minimum
pressure the vapour-liquid region separates from the liquid-liquid boundary. At these pressures
and temperatures, however, the ‘liquid’ and ‘gas’ phases sometimes have very similar densities

3r q r T r R
T p=os | | 1.00 1 1 UCEP 1

of ]
- y

5 {

0 1 1 1 1 1 Il 1 I 1 1 1 L

T,
3 i 1 -

2.00 2.50 3.00

0 1 0 1 0 1

. %
Ficure 15. T,,x-isobars for the type-III system of figure 14 ({ = 0.428, 4 = 0.257).
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Ficure 16. p,, T,-projection of a type-III, phase diagram ({ = 0.565, 4 =0.0869). Two critical lines: G;to
UCEP (G-L; p, = 1.203, T = 1.069, x% = 0.0176, V0¥ = 2.562, »* = 0.630, VX = 1.154); C,, to C,.
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and the distinction is not clear. The ‘gas-liquid’ region disappears at sufficiently high pressures
but the ‘liquid-liquid’ boundary continues to Cp.

Another example in region IIIy, at a lower value of 4, is given in figures 18 and 19. Here
the minimum in the ‘gas-liquid’ critical curve is near p;. The ‘liquid-liquid’ UCST detaches
from the ‘gas-liquid’ region before the UCEP is reached. Figure 19 shows the ‘hour-glass’
17 17 UCEP T ]
- 1.00 H4F 1.20

A A

THE ROYAL A
SOCIETY

4.50

/ﬂ

N

0 10 10 10 1

PHILOSOPHICAL
TRANSACTIONS
OF

Ficure 17. T,,x-isobars for the type-III,, system of figure 16 ({ = 0.565, A = 0.0869).

1.5'— | ] 2
! =~ ! ;0.21
5 \ 70470 0.30 1/
' /0.3 s ! /
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l
1e B |
= K ol LG
—
Lu U i} i )
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Ficure 18. p,, T -projection of a type-II1, phase diagram ({ = 0.60, A = 0.040). An enlargement of the region
around C, is also shown. (The UCEP is at p, = 1.127, T}, = 1.041, x&* = 0.0071, V" = 2,058, 1L = 0.462,
VL = 1.179).
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516 P. H VAN KONYNENBURG AND R.L. SCOTT

shape of the liquid-liquid two-phase region below the three-phase line. At pr = 1.0 (shown
in figure 19) the two parts have separated leaving a low-temperature UCST and a liquid-
liquid LCST. Examples giving type-III or ITIy, phase diagrams are the systems He + Xe,
Ne +Kr, CH, +7n-C;H;4, CO, +n-Ci5H,g.

- p=05 . - 0.8 E

0 1 0 1
5 10 4 ) )
& L L 45 x|
1z} st : |
5 L L J
o .
=S
5w 0.8 9k o .
= g L - B
g.8
E® | a 1L 1
&i—c
E L~ F/-x\ .
8 06 1 1 1 1 1 i I | L 1 I 1 1 "

0 0.2 04 06 0 1 0 1

—— X

FiGURE 19. T, x-isobars for the type-III system of figure 18 ({ = 0.60, A = 0.040).

In all of the two regions and two subregions labelled III (III-HA, III-HAp, I1T and I1In),
the three-phase line is stable from pr = 0,7 = 0 up to the gas-liquid critical line. This type
of behaviour has been called absolute immiscibility by Davenport & Rowlinson (1963). Phase
diagrams in region I, where there is no three-phase equilibrium, exhibit complete miscibility.
The remaining three regions to be described are cases of limited miscibility, where the three-
phase line exists over only part of the liquid range, as in the simpler types IT and II-A diagrams.

Type IV : three critical lines. Cy to UCEP (G-L), LCEP to Cy, (L-L to G-L) and
C,, to UCEP (L-L)

Region IV typifies the liquid-liquid UCST-LCST behaviour found in the systems methane +
1-hexene (Davenport ¢t al. 1966) and benzene + polyisobutylene (Freeman & Rowlinson 1960).
Three more hydrocarbon solutes (3,3-dimethylpentane, 2,3-dimethyl-1-butene, and 2-methyl-
1-pentene) have been found to show similar type-IV behaviour with methane [Scott & van
Konynenburg 1970]. '

A calculated phase diagram for region IV is shown in figure 20. This type of diagram results
when the minimum in the critical line going from C, to Cm appearing in diagrams for region
11, (for example, figure 19) has crossed the three-phase line and divided it into two parts.
When the ‘gas-liquid’ critical line that originates at C, reaches the region of mixtures rich in
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0.18!
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1.5k )
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pf 10?‘
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- 1
0
- 1'1'
Ficure 20. p,,T-projection of a type-IV phase Ficure 21. Enlargement of the region around the
diagram ({ = 0.5795, A = 0.0446). Three criti- three critical endpoints of the system of figure 20
cal lines: C, to UCEP (G-L; p, = 1.205, T, = (& = 0.5795, 4 = 0.0446).

1.066, x%% = 0.0148, V°L = 2.487, x = 0.372,
VY = 1.236); LCEP (L-L; p, = 0.554, T, =
0.885, x¢ = 0.0003, V& =8.91, xLt = 0.218,
VIL = 1.261) to C,; G, to UCGEP (L-L;p, =
0.241, T.=0.738, 1 < 104, V&~ 20.3,
Xt = 0.275, VI = 1.175).

UCEP
p=1.205

LCEP
r 0.554

T

0.8

- UCEP

-G \ 0.241
07 = Ll \\ Lg
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L 1 L L i

0 0.2 04
@

Ficure 22. T,,x-projection of the two three-phase lines occurring in the type-IV system
of figures 20 and 21 ({ = 0.5795, 4 = 0.0446).
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Ficure 23. T,,x-isobars for the type-IV system of figures 20-22 ({ = 0.5795, 4 = 0.0446).
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VAN DER WAALS MIXTURES 519

component 1 (small x), it is essentially a liquid-liquid LCST line which terminates at the
three-phase line at a LCEP. The liquid-liquid UCST line starts from Cp, and ends at a UCEP
just as in region II. The region around the critical endpoints is magnified in figure 21.

The three-phase lines are better understood by plotting the temperature dependence of the
composition of the three phases in equilibrium as in figure 22. The pressure is varying with the
temperature on this diagram and, as can be seen from figures 20 and 21, is only slightly lower
than the vapour-pressure of the pure component 1 at the same temperature. If pressure were
plotted instead of temperature, the diagram would have substantially the same form. The
arrowheads on the L;, L, and G curves at low temperature mean that these lines continue to
T: = 0. Rowlinson & Freeman (1961) have published the experimental curve for ethane with
a hydrocarbon polymer, corresponding to the upper half of figure 22, and the same general
features are evident. [The three-phase line for the system methane + 2,3-dimethylbutane
(Creek et al. 1977) is also representative of this type of phase diagram.] The low-temperature
UGSTs: in these systems presumably lie below solid boundaries.

0.2p

A 0.1

07

Ficure 24. Enlarged view of the area around region IV of figure 1.
The dashed arrow through region IV is explained in the text.

A series of Ty, x-diagrams at various constant pressures for the system in figure 20 is shown
in figure 23. For some of these an enlargement of the region about 7y = 1, x = 0 is given.

The van der Waals model clearly shows a continuous variation in behaviour similar to that
in the following series of mixtures (Davenport & Rowlinson 1963).

system phase behaviour
CH, + n-pentane type 11 complete miscibility
CH, + n-hexane type IV limited miscibility
CH, + n-heptane type 111 absolute immiscibility

In the first two mixtures a metastable low-temperature UCEP is presumed to lie below a solid
bO}lndary. [The shape of the melting curve in the system methane +n-hexane offers strong
ev1d-cnce for a metastable UCST near 7" = 150 K, x¢g, = 0.8 (Dickinson et al. 1973).]
Figure 24 gives an enlarged view of the area around region IV of figure 1. There are many
paths tha.t can be taken to go from region II to region IV to region III but all will show the
decrease in miscibility in a similar manner. One of these paths is illustrated by a dashed arrow

in the. figure. Critical endpoints have been calculated for systems along this line and their
locus is shown in figure 25. Here the tem

peratures of the critical endpoints are plotted against
the ratio ayy/a,;, = g ° s

T2/7j1. The‘curve at temperatures greater than 7, represents the high-
temperature UCEP, which begins at the boundary between regions II and IV and continues

51
5 Vol. 298. A
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520 P.H. VAN KONYNENBURG AND R.L. SCOTT

into region III. [This is a line of upper critical endpoints, because they lie at the upper end
(T and p) of a three-phase line; however, as a careful study of figure 23 will show, the critical
line that ends at such a UCEP is a line of lower critical solution temperatures (LCSTs).] The
curve representing the locus of LCEPs begins at the same point as the high-temperature UCEPs
and decreases in temperature through region IV. The lowest curve belongs to the low-
temperature UCEP; it runs from region II through region IV and steadily increases in
temperature until it joins smoothly to the LCEP curve at the boundary between regions IV

and III. - | . |
up temuopy |
e
. r | -L . |
1.0 | CEIN~ {
o |
09F | \,}
L |
,le > | ——
0.8rtype = type IV type
FoII : } 111
07F |
LA / l
06f | <
3 | Q/ |
05F | \SCS)' |
- | & 1[
04 | 9 i
L ! |
! [
03F A |
F { t
0.2 1 1 1 1 J
35 56 37 38

a'aa/a'n

Ficure 25. The locus of critical endpoints for systems along the arrow drawn in figure 24.
The points along the curve represent calculated endpoints.

[At the boundary between regions IT and IV the point where the two critical endpoint
lines end in a cusp (figure 25) is a ‘tricritical point’. In principle a tricritical point is a point
at which three coexisting phases simultaneously become identical (Widom 1973; Griffiths
1974) ; however, in unsymmetrical fluid systems a path along which three phases become
identical is not experimentally attainable in a closed system. Moreover, in the absence of
special symmetry the phase rule forbids tricritical points in systems of fewer than three com-
ponents. In terms of figure 25 this restriction arises from the fact that one cannot vary the
ratio a,y/a;; continuously in a set of binary mixtures.

[However we have shown (van Konynenburg 1968; Scott & van Konynenburg 1970) that
phase equilibrium in ternary mixtures of hydrocarbons (for example, methane with a pair of
higher alkanes) can be reasonably well represented as that in a set of ‘quasibinary’ mixtures
in which the ‘solute’ (actually a pair of very similar alkanes in varying proportions) may
have a continuous spectrum of thermodynamic properties. In such a quasibinary system the
ratio a@,,/a;; can be continuously varied and a tricritical point approached as closely as experi-
mental precision permits. Creek et al. (1977) have found such a tricritical point in two
systems: methane + (n-pentane + 2,3-dimethylbutane) and methane + (2,2-dimethylbutane +
2,3-dimethylbutane). Their experimental plots of the critical endpoint curves (temperature


http://rsta.royalsocietypublishing.org/

JA \
' B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

VAN DER WAALS MIXTURES 521

against the composition of the ‘solute’ mixture are qualitatively the same as the upper half of
figure 25.]

[The boundary separating regions II and IV and that separating regions IV and III (on
the master diagram figure 1) intersect exactly at the geometric mean line ({ = (10,/6 — 6,/2) /33
= 0.48514, A = 0.12556), a feature known to van Laar. In 1968 we believed (as we think
van Laar believed for the somewhat analogous &, { diagram for the geometric mean) that
beyond this point a single boundary defined a direct transition from type II to type III. In
response to a query from R. B. Griffiths and J. C. Wheeler we tardily re-examined this point
and found that the two boundaries crossed at the geometric mean line and that there is a very
narrow region separating type II from type III. In the meantime Furman & Griffiths (1978)
had made similar calculations for the van der Waals binary mixture and had reached identical
conclusions.

[Beyond the geometric mean line the two boundaries define a new region, which we may
call type IV*, so narrow that it is almost certainly of no practical importance. Without the
precision of modern high speed computers the separation could not even have been determined ;
at { = 0.30 0.15, and 0.00 the difference in A between the two boundaries is approximately
AA = 1x1075, 2x107¢ and 5 x 1077, respectively. Type-IV* and type-IV phase diagrams
differ in the connectivity of the three critical lines. In type IV the three are C, to UCEP
(higher), Cm to UCEP (lower), and C, to LCEP (intermediate); in type IV* it is Cp, that
connects with the higher UCEP and C, that connects to the lower UCEP while C, still is
joined to the intermediate LCEP. The diagram corresponding to figure 25 is reversed; the
tricritical point cusp is at the boundary between IV* and III at higher a,,/4,; (higher 4 and §).
For other simple van der Waals-like equations of state, the intersection of the two boundaries
(i.e. the change from IV to IV*) does not necessarily occur at the geometric mean line, but the
IV* region is again very narrow.]

Type V: two critical lines: Cy to UCEP (G-L), LCEP to C, (L-L to G-L)

At the arithmetic mean line (a.m.) or abscissa in figure 1 the low-temperature UCST
phenomenon disappears at 7t = 0. At this boundary between regions IV and V only the three-
phase line close to C,; remains. An example for the arithmetic mean is given in figure 26,
with an enlargement of the region around the three-phase line in figure 27. [The example of
type V given in figures 26 and 27 is for a system that actually lies on the boundary between
type IV and type V (4 = 0), but the behaviour is qualitatively like that of any type-V system.
Calculated T%,x-phase diagrams at different p, for this system were given in the thesis, but,
since they are almost indistinguishable from those shown in figure 23 (except of course for the
absence of the low-temperature liquid-liquid equilibria), they are omitted here.]

As shown in figure 25 an LCEP can lie at temperatures above 7y = 1. A pr,Tr-diagram is
given in figure 28 as an example of this behaviour for a system from region V. Only the area
around C; is shown.

Examples of type-V phase diagrams include ethane + ethanol, carbon dioxide + nitrobenzene,
and methane +z-hexane, but, as indicated above, some of these are probably really type IV
with the Cp-UCEP critical line hidden below the melting curve.

5I-2
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i

I

5r

4

f: 3f

2 -

1F

0
FiGure 26. p,, T,-projection of a type-V phase dia- Ficure 27. Enlargement of the region of the critical
gram ({ = 0.6, 4 = 0.0). T'wo critical lines: C, to endpoints of the type-V system of figure 26 ({ =

UCEP (G-L; p, = 1.1313, T, = 1.0417, #%% = 0.6, A = 0.0).

0.0068, VL = 2,618, x“ = 0.2658, V'Y = 1.265);
LCEP (L-L; p, = 0.745, T, = 0.942, x® =
3.0x 1078, V¢ = 6.241, xL* = 0.11241, V1% =
1.386) to C,. The critical endpoints are shown
in detail in figure 27.

14r
I A
//
1.21
FZ2
L.L,G
1.0 -
1
0.8 g 1 il 1 ]
0.95 1.00 1.05

T,

r

Ficure 28. p,, T,-projection of a type-V phase diagram. ({ = 0.5833, A4 = 0.0833). Enlargement of the region
around the three-phase line. Both critical endpoints lie above G, (UCEP: p, = 1.146, T, = 1.045, «8" =
0.0074, V5 = 2,531, x» = 0.121, V¥ = 1.434; LCEP: 5, = 1.015, T, = 1.015, x® = 0.0013, V¢ = 3.95,
X = 0,058, VI = 1.604).
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x=010
sl , ~.0.20
/ AY
’ \
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- L ///
£x
- 1.0f
L 1
t 0.8 i i
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T, T,

Froure 29. g, T -projection of a type-V-A phase Ficure 30. Enlargement of the region around the
diagram ({ = 0.20, 4 = —1.80). Two critical three-phase line for the p,7T,-projection of the
lines: Gy to UCEP (G-L); LCEP to G, (L-L to type-V-A system of figure 29 ({ = 0.20, 4 =
G-L). One negative azeotrope line (x4% = 0.556). —1.80). (UCEP: p, = 1.051, T, = 1.015, x%L =
Details of the critical endpoints are shown in 1.0 x 10-3, VST = 2,769, x¥ = 0.0450, VI = 1.555;
figure 30. LCEP: p, = 0.928, T, = 0.0985, x% = 7x 1075,

Ve = 4.3, 2 = 0.0179, V¥ = 1.746).
3r a1 - T X
- p =060 b 1.00 4 - -1.50 1+ 2.00 .
2+ 4 F 4 4 F -
4] i i i i i i 1 i | 1 i 1 4 i 1 1
T,
3r - o o E
2.40 2.50 2.65 2.80
- y 1L 1L 1L 4
2t \ﬂ % '\_ i x _/ ]
1+ 4 F 1L 1L .
1 1 1 1 1 1 1 i 1 i N \ | i {
0 10 10 10 1

; x
FiGURE 31. T, x-isobars for the type-V-A systems of figures 29 and 30 ({ = 0.20, 4 = —1.80).

Type V-A: the same as V, with the addition of a negative azeotrope

Finally, figures 29-31 show an example with an large negative value for 4 in region V-A
that is unobtainable physically. Here negative azeotropy is combined

) .. . with three-phase
behaviour similar to that of region V. In all of the known experimental p, T-

diagrams the first
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maximum in the critical line near C, does not exist. This unusual feature means that the
azeotropic 77, x-diagrams divide into two branches before disappearing at higher pressures as
shown in figures 31. Not all type-V-A diagrams show this behaviour; the azeotrope can also
disappear as shown previously for an example in region I-A, figure 6. [The anomalous
behaviour in figures 29-31 is not simply a result of the cusp in the critical line, which disappears
when & # 0; even when £ # 0 the smooth critical line can have two maxima when 4 is a
large negative number.]
An experimental example is H,O +HCIL.

() Symmetrical systems: & = 0, { = 0

When ¢ = 0 there are special solutions to the equation for the critical lines at » = %. The
thermodynamic functions in this case are all symmetric about # = }. [The only real binary
systems in which such symmetry occurs are mixtures of 4, l-optical isomers (Scott 19%77; liquid—
liquid phase separation has not yet been reported for any such system, so the phase diagrams
of this section are as yet hypothetical.]

It was shown in a foregoing section that the conditions for a critical point involved derivatives
of the molar Helmholtz free energy A, with respect to ¥, and x. The imposed symmetry
requires that all odd derivatives of 4,, with respect to x must vanish at x = }:

Aac = Aaa: = 03 AxV = A3acV = 03 szV = Aasz = 0; etc.

At any critical point
y P Go = Ay Ay /Ay = 0

and, since here 4, = 0, this implies 4,, = 0. With the van der Waals equation, the solution

of 4,, = 0 yields the only additional stable critical line for the symmetrical case:

8 27 4]

b= T} [—“‘““"—*“TT-;,

% T, (To) (23)

where 7% = 2/, as given by (14), when { = 0.

When A is negative this critical line always remains at negative pressures and is certainly
not a stable solution. When A is positive, part of this critical line becomes stable at high
pressures.

The critical lines of phase diagrams along the A-axis are symmetric about x = 4 and in
the regions I-A and V-A (both have A < 0) they show the same features as when ¢ > 0.
However the phase diagrams along the positive part of the A-axis differ in detail from those
of regions II-A and ITI-HA on figure 1.

A phase diagram for { = 0, situated adjacent to region ITI-HA, is shown in figure 32. The
vapour-pressure curves 1 and 2 coincide and the critical line is symmetric about x = . A
three-phase line (L,L,G) extends from pr = 7r = 0 and terminates at a UCEP (marked with
a cross) at the beginning of a critical line at x = }, given by (23). Above the UCEP the x = }
critical line is stable and continues to infinite pressure. [This point, at which two criticai lines
intersect and a three-phase line ends is more than a UCEP; it is a symmetrical tricritical point.
Unlike the usual unsymmetrical tricritical point, it could exist in a (symmetrical) binary
system, and in principle one could observe experimentally three phases changing simultaneously
to a single phase in a system of overall composition x = 4. The low-pressure critical line has
two branches (¥ < %, x > 1) but these join smoothly on a T,x- or p,x-plot, intersecting the
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x = } critical line at right angles.] The series of Tt,x-diagrams in figure 33 shows how the
gas-liquid critical points disappear smoothly so that only a single liquid-liquid critical point
exists at high pressures, i.e. above the UCEP. [The phase diagrams are clearly just the
symmetrical limit of type-III-HA diagrams, and the only new feature is the simultaneous
disappearance (merging) of the gas-liquid critical points at the tricritical point.]

3r

A
I
i
1

UCEP T x=0.5
0.4,0.6

0 2

Ficure 32. p,T,-projection of the phase diagram of a symmetrical system ({ = 0.0, 4 = 0.5). The critical
composition along the critical line above the UCEP is &° = }. [The point labelled UCEP is in fact a
symmetrical tricritical point; for explanation, see text.]

1.0

- —T - . - 4
0.5 1 L L L n L i L L L L 1
T,
1.0 q r 7 o ‘
1.20 2.34 2.50
L ] L —x L x\ ]
I /‘;43\ 7 N LT |
L \ L . » 4
0.5 1 I 1 1 ) i 1 I 1 1 1 !
0 1 0 1 0 1

—_— ey
F1GUrE 33. T,,x-isobars for the symmetrical system of figure 32 ({ = 0.0, 4 = 0.5).
[x,at x = } on the T,,x-diagram for p, = 2.34, is the tricritical point.]

In figure 34 is shown an example with { = 0, belonging to a region adjacent to region II-A.
Here the gas-liquid critical line beginning at C; or C, ends at an azeotrope line at x = §.
Another critical line begins at pr = 1.50 when x = } and is terminated just below the azeo-
trope line by a three-phase line. A second three-phase line beginning at pr = 1.5 intersects
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the first three-phase line and the azeotrope line at an unusual type of endpoint. A three-phase
line then continues from this intersection to pr = Ty = 0. Again the x = } critical line becomes
stable only at high pressures, in this example at pr = 1.5, and continues to infinite pressure.
[Here again, it is a tricritical point.]

- A 0.9r
15f +=0.50 UCEP - |
I
1
. 0.8F 0680;0320 7
: Az 0500
ol 06850315
\
b b '
i 07
0.5/
I 0.6
0 7 N 1/ 1 A 1 R
r Tl'

Ficure 34. p,, T\-projection of a symmetrical system
(§ = 0.0, A = 0.42). The critical composition
along the critical line above the UCEP at high
pressnre is x° = 4. [The UCEP atx = 0.5 is a
symmetrical tricritical point; for explanation, see
text. ]

F1Gure 35. Enlargement of the region around the
intersection of the azeotrope and the three-phase
lines in the p,, T.-projection of the symmetrical
phase diagram. of figure 34 ({ = 0.0, 4 = 0.42).
The two (mirror) UCEPs occur at p, = 0.715,
T, = 0.771, and xM = 0.311, x% = 0.44, or x% =

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

0.56, x12 = 0.689.

An enlargement of the region around the intersecting three-phase lines and azeotrope line
is given in figure 35. At pressures such that 0.62 < pr < 0.715 the azeotrope and the three-
phase lines lie so close together that even on this scale they would nearly coincide; therefore
this three-phase line is purposely displaced to the right on the figure. A series of 7r,x-diagrams
are given for this example in figure 36. At pr = 0.70 and pr = 0.715 no attempt is made to
draw the azeotrope accurately. For these two pressures the region around ¥ = } is exaggerated
in figure 37 to show the details more clearly.

[This phase diagram is clearly more complex than those for region II-A. In addition to the
tricritical point, instead of one three-phase line there are three, and there is one extra pair of
critical lines. All these features cannot disappear immediately when { ceases to be exactly zero,
a fact that should have alerted us to the existence of the ‘shield’ region that Furman ef al.
(1977) found.] ;

[The 1968 dissertation overlooked two other kinds of phase diagrams along the { = 0 line
in the master diagram (figure 1) that were discovered by Furman & Griffiths (1978) and (in
part independently) by Scott (19776, unpublished). The four types of symmetric phase diagrams
can be summarized as follows.

(i) Symmetric I1I-A, 0 < ¢ < 0.3478: a critical line, C; to C,, with the upper end of an
azeotrope line at its midpoint (x = }); a critical line at ¥ = }, Cn to a UCEP, the upper end
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Low o o UCEP
' p, =060 0.70 0.715

0.5 1 L ] 1

075

0.5 1 L L 1 1 | " i
1.0 - - UCEP A _ -
1.20 1.50 175
- - = . » ) p
- XX 1 i X i " * ]
F[— \-‘ ! ) I ]
o 4 - e - e
0.5 L 1 L ) 1 ) | ) A 1 ]
0 1 0 1 0 1

——— X
Ficure 36. T,,x-isobars for the symmetrical system of figures 34 and 35 ({ = 0.0, 4 = 0.42). The diagrams at

b = 0.70 and p, = 0.715 are schematically enlarged in figure 37. [The UCEP in the p, = 1.50-diagram is
a symmetrical tricritical point.]

p=070

/- N\

UCEP

Ficure 37. Schematic enlarged T, x-isobars for two pressures for the symmetrical system
of figures 34-36 ({ = 0.0, 4 = 0.42).
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of a three-phase line, which is also the lower end of the azeotrope line; no tricritical point.
(Except for the symmetry this is similar to any other II-A diagram.)

(ii) Symmetric (II-A)*, 0.3478 < { < 0.4364 (see, for example, figures 34-36): a critical
line, G, to C,, with the upper end of an azeotrope line at its midpoint (¥ = }); a critical line
at ¥ = %, Cp to a tricritical point, which is also the UCEP for a three-phase line (a); a third
critical line that runs from the central tricritical point to the UCEPs of separate three-phase
lines (B’ and B”), which at a lower temperature and pressure join the three-phase line o at
the lower end of the azeotrope line to form a single three-phase line (7).

0.6 T T T T

II1-HA ITII-HA

HI-A%

L 1 | I 1

—0.1 0 0.1

¢

Ficure 38. Enlargement of the main diagram (figure 1) in the region of { = 0.00, 4 = 0.43 showing the
‘shield’ region and the regions representing special types II-A*, III-A** and III-A%.

(i) Symmetric (III-A)*, 0.4364 < { < 0.4664: a critical line, C; to C,, each branch
with a maximum and minimum pressure, with a tricritical point at x = §, which is also the
UCEDP for a three-phase line (o); a critical line at ¥ = %, Gy, to the tricritical point; a critical
line that runs from the upper end of an azeotrope line (¥ = ) to the UCEPs of separate three-
phase lines (B’ and B”), which at a lower temperature and pressure join the three-phase line
a at the lower end of the azeotrope line to form a single three-phase line (7).

(iv) Symmetric III-HA (or ITI-HA,), 0.4664 > ¢ (see, for example, figures 32-33): a
critical line, C; to C,, each branch with a maximum and minimum pressure for { < 0.493,
with a tricritical point at x = %, which is also the UCEP for a three-phase line; a critical line at
x = %, G to the tricritical point; (except for the tricritical point generated by the symmetry,
this is similar to other I1I-HA diagrams.)

[These especially complex diagrams of special symmetry lie along the midline of what
Griffiths and co-workers have called the ‘shield region’, first discovered for a symmetrical
three-component system by Furman et al. (1977) and later modified by Furman & Griffiths
(1978) for a van der Waals binary mixture. The ‘shield region’ is shown on an enlarged 4, ¢-
plot in figure 38. (The boundaries are those calculated by Furman & Griffiths, converted to
our units; the few calculations that we have made independently are in complete agreement
with theirs.)]
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[Figure 38 shows the shield region divided into six subregions by three lines of tricritical
points, the symmetrical tricritical points at { = 0 and two sets of tricritical points along the
boundaries between type-II-A and -III-A,, behaviour. (The bands of type-IV* behaviour
are too narrow to be shown). Away from the midline the phase diagrams are no longer com-
pletely symmetrical, but have the same complexity, as exemplified by three critical lines. In
our terminology these can be classified as follows.

(i) Type (II-A)*: a critical line, C; to C,, with the upper end of an azeotrope line joining
it near x = 4 (but at ¥ = } only if { = 0); a critical line, G to a UCEP at the upper end of
a three-phase line (p’); a third critical line connecting the UCEPs of separate three-phase
lines (a and B”), which at a lower temperature and pressure join the three-phase line B’ at
the lower end of the azeotrope line to form a single three-phase line (y).

(ii) Type (III-A)**: a critical line from Cp, to C,, with a minimum and a maximum in
the p,x-curve; a critical line from C, to the upper end of an azeotrope line and on to a UCEP

b

T,

Ficure 39. Schematic p,, T-projections of phase diagrams for the special types II-A*, III-A¥*, and III-A¥.
The figures are not to scale, but are exaggerated for clarity. The unmarked solid lines are three-phase
lines; in reality most of these will have slopes very nearly the same as those of the azeotrope and pure-liquid
vapour-pressure curves, as in figures 34 and 35.

52-2
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at the upper end of a three-phase line (B’); a third critical line connecting the UCEPs of
separate three-phase lines (a and B”), which at a lower temperature and pressure join the three-
phase line B’ at the lower end of the azeotrope line to form a single three-phase line (y).

(iii) Type (III-A)*: a critical line from Cp, to C, with a minimum and a maximum in the
p,x-curve; a critical line from C;, with a minimum and a maximum in the p,x-curve, to a
UCEP at the upper end of a three-phase line (a); a third critical line connecting the UCEPs
of separate three-phase lines (B’ and B”), with the upper end of an azeotrope line intermediate
along the critical line; these two three-phase lines join the third («) at the lower end of the
azeotrope line to form a single three-phase line (y). (For ¢ < 0, the roles of C; and C, are
reversed.)

[Figure 39 shows schematic p,7-projections for these three special types, each drawn for
¢ positive but close enough to zero that the relation to the symmetric diagrams should be self-
evident. For systems close enough to ¢ = 0 all these must have real azeotropic behaviour;
it is not certain, however, whether the III-A-III-HA and the III,-III boundaries must
necessarily lie outside the shield region.]

5. PHASE DIAGRAMS FOR BINARY MIXTURES OF MOLECULES ON UNEQUAL SIZE

Van Konynenburg’s (1968) dissertation (ch. IV) includes extensive calculations and figures
for £ = 4 (by, = 2b;,). Again the basic equation is (15) but now the volume parameter b
varies linearly with the mole fraction (7). [For spherical molecules the more general quadratic
dependence (6) (with the Lorentz expression for b;,) would doubtless be better, but most
molecules are non-spherical. For linear molecules (for example, mixtures of n-alkanes), (7) is
clearly preferable, but one perhaps should then replace the ideal mixing term in (10) by the
analogous Flory formulation for polymers. (See, for example, Scott & van Konynenburg 1970).
For modest differences in size, these different formulations all still lead to very similar phase
diagrams.]

Here we merely summarize some of the general results and conclusions.

(i) No new major types of phase diagrams were discovered. The A,{ master diagram for
£ = 1 (figure 40) is no longer symmetrical around the { = 0 axis, but the topological relations
are essentially unchanged. For example, the II-IV boundary [i.e. the locus of unsymmetrical
tricritical points] crosses the 4 = 0 axis at { = 0.28 and { = —0.78 rather than at { = +0.56
(for £ = 0). There is a region of type-IV behaviour for a range of positive {’s (0.26-0.30)
along the geometric mean. The various regions of the diagram were not explored in nearly as
much detail as they were for § = 0. [In particular it is not yet known whether a ‘shield region’
(like that shown in figure 38) occurs around the intersection of the three tricritical lines (now,
all three, loci of unsymmetrical tricritical points).] ,

(ii) The azeotropic composition x4% is no longer independent of temperature and pressure.
At very low temperature (i.e. at 7 = 0, ignoring the existence of solid phases) the azeotrope
line starts at a mole fraction given by the equation

[A(1—E) + 288 +28%] (w—1)2—A(1-£%)% = 0, (24)

where w = 1—2x4%, It can be shown that at most only one of the two roots of (24) corresponds
to a value of ¥2%Z between 0 and 1. At low temperatures there can be at most one azeotrope
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line, a result already known to van der Waals (1890). The limit of low-temperature azeotrope
behaviour (i.e. when ¥4% = 0 or 1) is defined by two straight lines:

A(E£1) = E+¢, (25)
which are shown in figure 40.

L -

Ficure 40. Diagram of phase behaviour for molecules of unequal size (§ = 1).

1.5

b}

0.5F

0

T,
FiGure 41. p,, T,-projection of a type I-A phase diagram (§ = —0.263, 4 = —0.579, £ = 1).
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The azeotrope line ends at high temperature by joining a critical line at a mole fraction
given by the equation

2[A(1 - £%) + 286+ 2E%] (Bw—1)*+ A(1 - £%) (bw—2+ £ + LE(1 - %) (Ew—1) = 0. (26)

The junction is now tangential as is shown in figure 41. The unusual cusp in the critical line,
found when £ = 0, has disappeared. The limit of high-temperature azeotrope behaviour
(x4% = 0 or 1) is defined by two more straight lines:

34(E+1) = 46+L(378). (27)

For £ # 0, this pair of lines is displaced from the low-temperature lines and, for any system
lying in the narrow sector of A, {-space between the two lines, the azeotrope line appears or
disappears at ¥ = 0 or ¥ = 1 at an intermediate temperature.

_ %} N

0.05

A
0
_0.05 1 1 I} Il 1 L 1 L 1 / L 1 1 L 1 1 L\4
—0.50 —0.45 —0.40 —0.35 —0.30

¢

Ficure 42. Enlargement of the region of double azrotropy (shaded) for £ = 4. The regions A to R
correspond to the 7, x-projections in figure 43. For an explanation of Bancroft points see text.

Azeotropy is very likely to be found experimentally in systems where the vapour pressures
of the two pure components are very similar. In some systems the vapour-pressure curves
actually cross on the p, 7-projection; the intersection is called a Bancroft point. Except for an
ideal mixture, the existence of a Bancroft point always implies azeotropy, but none of the
classes of azeotrope lines require the existence of a Bancroft point. For £ = 0 the vapour-
pressure curves do not cross; for £ = } Bancroft points are produced with the van der Waals
equation for values of § betweén —} = —0.333 and —0.423.

(iii) A very special feature of a small region of A, {-space for £ = } was the discovery of
systems with double azeotropes, i.e. with both minimum and maximum boiling mixtures in
the same phase diagram. Figure 42 shows au enlargement of the A, {-master diagram in this
region. The shaded region is where the double azeotropes occur. The letters A-R designate
different kinds of 7', x-projections of the critical and azeotrope lines that are shown schematically
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in figure 43. All the double azeotrope systems arise from a single azeotrope line that has a
minimum in the 7,x-projection, i.e. the two extrema coalesce at a lower temperature. There
is no evidence to suggest that the first system for which there is unambiguous experimental
evidence of double azeotropy, benzene + hexafluorobenzene studied by Gaw & Swinton (1966 ;
1968), has this property.

[T r=~d [ Te~<d [T
T A B c\

N(1-C) none P(C-2)
0 x 1
- - T~ r~ ~ - =~
7~ = Sso ]| N 3
D E ] F G H
D(1-C) P(1-C) P(C-C) D(C-C) D(C-2)

J M~ —
N(0-C) % L M

N(()—ZV none P(1—3)

Ficure 43. Schematic T, x-projections for the fourteen possible types of azeotrope lines for £ # 0. The labels A
to R refer to the regions in figure 42. N(1-C): negative azeotrope line running from the vapour-pressure
curve of pure liquid 1 to the critical line; P(C-3): positive azeotrope line starting at the critical line and
ending on a three-phase line; D(C-C): double azeotrope line starting and ending on the critical line; etc.

The authors wish to thank R. B. Griffiths, C. M. Knobler, I. A. McLure, J. S. Rowlinson,
J. C. Wheeler and A. G. Williamson for many helpful discussions and useful suggestions. The
research of which this is a part is supported by the U.S. National Science Foundation.

ArPENDIX A. CALCULATION OF CRITICAL LINES AND PHASE DIAGRAMS
FOR A VAN DER WAALS BINARY MIXTURE WITH § = 0

Equations (16) and (17) were solved simultaneously by using (15) for the Helmholtz free
energy. After much lengthy algebra an equation, F' = 0, which is seventh order in both ¥}
and x was obtained (here, V' is written for V, = V,/b).

F = VS(V—3)y32% + 3VA(V — 1)2(V — 8) fy223
—6V4(V —1)2y[ay(V-3) - 3V -2)] 22w
— VAV = 1)385zw2 — 4V2(V — 1)34[3ay(V — 1) (V — 3)
— B2V — 3)2] 22 + 12V2(V — 1)4afary(V —3) — B2(V — 2)] 2w
+12(V — 1)8(V = 3)a2Bz — 8(V — 1)8(V — 3)adw = 9, (A1)
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where z = x(1—x), w = dz/dx = 1—2x,

o= (1—x)2+2x(1—x) (glz-)+x2 (32_2)

a5 11 a4y

= (1-wf-22z4)/(1-0),

A 43 A4y
= 2({~wd)/(1-0),
_ Qe @_@
and Y=gE = 2 (1—{-‘111 2a11
= 44/(1-).

The auxiliary expressions for the reduced temperature and pressure are

_ 27120 fw(V —1)3 4+ 20yz(V—1)2 (V—3) —282z(V —1)2 (2V = 3) — 222V 2(V - 3)]

T: SV V= 12 (V=8) 7 puV 3 (V= 1) = y2V3(V =3) ’
(A2)
T
pr= -2 (A3)

Roots (values of ;) were obtained for fixed values of 4, { and x. The computer program
first examined the sign of F at V. = 1+ AV, where, typically, AV, was chosen as 0.05. The sign
of F was examined again for successive additions of AV; to V; until ¥ changed sign. This located
the root between the current value of V; and V, — AV,. AV; was replaced by half of its original
value and the sign of F was examined for V; = V;— AV;. This process was repeated for a fixed
number of iterations (usually 5-10 depending on the accuracy desired). A mean value of V;
(called ¥},;4) was computed from the last immediately preceding values of V;, Vyin and Vo,
and of F, F(Vyign) and F(V,y).

Vmid

- F(Vhigh) Vl'ow”‘F(Viow) Vhigh
F(Vugn) —F(Viow)

The corresponding values of Ty and pr were also calculated and printed in the output.

After one root had been found, another root was obtained by repeating the process with a
starting value of V; equal to the previous root plus AV;. Apparently, when V, = 3 the range of
meaningful roots was exhausted (there were never any unaccountable endpoints to critical
lines). The entire process was then repeated by starting with a new value of x, and V; = 1+ AV,.
The program continued until all the selected values of x had been examined. The work was
done on the U.C.L.A. IBM model 7094 and model 360-75 computers. Physically meaningless
roots corresponding to negative temperatures were always discarded; roots corresponding to
negative pressure are at best metastable but were not automatically discarded.

The procedures necessary to obtain the stable coexistent phases of a two-component system
are very similar to the well known ones used for the one-component system. For a two-com-
ponent system the relative activities A and A¥ of components 1 and 2 are defined by the

equations
In Al = [ —pa(VR)]/RT, (A 4a)

In AF = [pa—p2(VR)1/RT. (A 40)
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In terms of reduced parameters the activities for £ = 0 (b;; = by, = b), after setting Vg = b,
become
" 27[1 —x +x(ays/a11)] (1—x) 1
L S,

In Af = A +In 1 +Vr__1, (A 5a)

27[(1 =) (@19/a11) +x(ass/01)] ( ¥ ) 1

* o

InA¥ = A +1n ] +Vr__1. (A 5b)

For a mixture at constant temperature and pressure the appropriate free-energy plot is the
molar Gibbs free energy Gm against x. A computer program was designed to solve the van der
Waals equation for x at constant g and 7 for a series of values of ;. The values of ¥, T, and »
were in turn used in (A 54) and (A 55) to calculate a series of activities. The activities were
used to calculate a free energy function

(Gu—GS)/RT = (1—x) In A¥ +x1In AF, (A6

which was then plotted against x by a Calcomp model 765 plotter.
In A¥

=4
m

RT
In A¥

Gn—G

Ficure A 1. Three isotherms of a binary mixture near a UCST (the same constant pressure for all three). (a)
Gibbs free energy, G (divided by RT'), against mole fraction x; (5) In A;, the activity of component 1 against
In A, the activity of component 2.

The form of the curves produced is shown schematically for three isotherms in figure A 1a
for a system going from a two-phase to a one-phase system with increasing temperature at
constant pressure. For values of the free energy and composition along the dashed (metastable)
or dotted (unstable) portions of the curve, the system can have lower free energy by dividing
into two phases the compositions of which are determined by the points where a straight line
meets the curve at a tangent. At the critical point the two coexistent phases become identical
and the metastable and unstable portions of the curve disappear at a point (marked with a cross).

The corresponding activity plot is given in figure A 15 for the three isotherms shown in
figure A 1a. Two phases, a and B, coexist when

ug =B, ps = p8 (constant T,p),

that is, at the intersection of the two stable branch curves. Like the tangent line in figure
A 1a, the intersection on the activity plot defines a point on the coexistence curve (—-—).
A computer program was used to calculate these points of intersection and the results were
used to construct Tr,x-phase diagrams at constant pressure for the mixtures described earlier.
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By definition a UCEP occurs in fluid systems when a three-phase line (L,L,G) intersects a
critical line as the temperature is increased. Suppose the situation is as shown in the pr, T~
diagram in figure A 24, a typical case of limited miscibility close to the gas-liquid critical point
of the volatile component. The full lines represent the vapour-pressure curve of component 1
(labelled 1), and the three-phase line (labelled L,L,G). The vapour-pressure curve of com-
ponent 2 is not shown. (For an example of a typical complete diagram, see figure 26.) Typical
calculated critical lines are shown as dashed lines.

=
Q
p—

s

Q

=

jae)

o~

a=d
m

t:

RT

A
Gm—G

three
phase f
line

® - /
>
\_
=
4

_/

Ficurk A 2. (a) Enlargement of a high-temperature three-phase line bounded by a UCEP and a LCEP.
(b) Gibbs free energy against mole fraction at the points on the phase diagram in (a).

In the plots of (G, —G&)/RT against x in figure A 24, the curves a—d are for different
values of x¢ (each having different values of pr and 7;) and correspond to the critical points
a—d shown in figure A 2a. (The metastable and unstable portions of the curves are not shown
as dashed and dotted lines as earlier.) For the point a, the critical point on the G,x-curve
(marked with a cross x ) lies at a low mole fraction outside the two-phase part of the curve.
At the UCEP, a secend (liquid) phase with a larger value of x than the critical composition
is in equilibrium with the critical mixture. Point & is typical of points belonging to a meta-
stable portion of the critical line.

A LCEP occurs when a three-phase (L,L,G) line intersects a critical line as the temperature
is lowered. Along the critical line above the LCEP a critical point such as ¢ lies outside the
two-phase portion of the G, x-curve. At the LCEP a gaseous phase is in equilibrium with the
critical (liquid) mixture. The point d lies on a metastable part of the critical line.

The points ¢ and f in figure A 2 correspond to values of pr and Tr where more than one
phase is stable. Point ¢ lies between the vapour-pressure curve (1) and the three-phase line.
At this value of pr and T there are two equilibria: G(x") —L(x") and L(x") — L(x@). At the
three-phase line two liquid phases and a gas phase [G(x") — L(x") — L(x7)] are in equilibrium
and at point f only two phases [G(x") — L(x@")] are stable.

In figure A 8 activity plots of In A} against In A§ are given for the points a—f in figure A 2.
(The metastable and unstable portions of the curve are not shown as dashed and dotted lines.)
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The critical point (a) lies along the gaseous branch (G) outside the area enclosed by the inter-
secting branches; the UCEP is reached when the liquid branch (L) intersects the gaseous
branch at the critical point; the point 4 lies on a metastable part of the critical line. Point ¢
lies outside the area enclosed by the liquid and gaseous branches; at the LCEP the gaseous
branch intersects the liquid branch at the critical point; point flies on a metastable part of the
critical line.

\x \
\
\

three phase

a
G
~ X
L
c
& ‘
X
\L
line
e f
G
L

In A¥

Ficure A 3. In A}, the logarithm of the activity of component 1, against In A¥, the logarithm of the activity
of component 2, at the points on the phase diagram in figure A 2a.

In AY

A three-phase line that intersects a low-temperature liquid-liquid UGST line is analysed in
the same manner as the high-temperature UCST.

A computer program was designed to find critical endpoints along critical lines by calculating
the intersections of branch lines of activity plots at critical points (see figure A 3). Some of
the results were given with the calculated phase diagrams of §4.

Points along three-phase lines were found in the following way. For a fixed value of p; and
T: a series of values of V; was used to calculate a set of compositions by solving the van der
Waals equation for x. These values of V; and x, along with p: and 7%, were used in (A 5a) and
(A 5b) to calculate In Af and In AF. A series of plots similar to the three phase line plots shown
in figure A 3 were made at a fixed value of p: to find the value of T} at which the three stable
branches intersected at the same point.

ArPENDIX B. THE VAPOUR PRESSURE OF A PURE
VAN DER WAALS FLUID
A computer program was designed to calculate the reduced pressure (p:), temperature (77)
and coexisting volumes of gas (V'¥) and liquid (VY) along the vapour-pressure curve of a
one-component van der Waals fluid. This was accomplished by plotting p: against In A in a
53-2
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way entirely analogous to the In Af against In A¥ plots of Appendix A. By applying the con-
dition (0p/0V), = 0 to the van der Waals equation (2) for a particular value of 7%, two roots
(values of V) are found. The larger value of 1 was used in the program to calculate the pressure
maximum (where the metastable gas ends and the mechanically unstable fluid begins). While
the same value of 7; was retained, pr was decreased by decrements Apr. At each new pressure
there are three roots to the van der Waals equation corresponding to the volumes of the liquid,
the metastable gas and the mechanically unstable fluid. The volumes of the liquid and the
metastable gas phases are the smallest and largest respectively of the three roots and were used
to calculate In A¥ and In A® from (A 54) with ¥ = 0. The pressure was decreased by decre-
ments Apr until the difference In A¥ —1In A% changed sign. The sign of ln A¥ —1In A% was then
examined at p; = pr+3Apr and so on until Ap/pr < 5x 10-5. The values of pr, VI, VE, In AL
and In A% were all printed out at each new value of . for each isotherm so that convergency
could be checked. The resulting values of 7%, pr, V¥ and V' are given in table 1. The last six
entries at low pressure were recalculated with more significant figures than were used for the
rest of the table to improve convergence. The densities (inverse volumes) of the coexisting
phases and the ‘diameter’ (average density) of the coexistence curve are also tabulated.

TABLE 1. VAPOUR-LIQUID EQUILIBRIA FOR A PURE VAN DER WAALS FLUID

T, b VE=VEb  VE=V8/b  pi=1/VE P =1/VE  (ph4pY)
1.00000 1.00000 3.0000 3.0000 0.33333 0.33333 0.33333
0.99000 0.96047 2.4928 3.7291 0.40116 0.26816 0.33466
0.98000 0.92191 2.3266 4.1283 0.42981 0.24223 0.33602
0.97000 0.88430 2.2127 4.4880 0.45194 0.22282 0.33738
0.96000 0.84761 2.1246 4.8356 0.47068 0.20680 0.33874
0.95000 0.81187 2.0524 5.1814 0.48723 0.19300 0.34012
0.94000 0.77707 1.9911 5.5315 0.50223 0.18078 0.34151
0.93000 0.74317 1.9378 5.8905 0.51605 1.16976 0.34291
0.92000 0.71021 1.8907 6.2607 0.52890 0.15973 0.34432
0.91000 0.67814 1.8485 6.6456 0.54098 0.15048 0.34573
0.90000 0.64699 1.8102 7.0467 0.55242 0.14191 0.34717
0.89000 0.61673 1.7753 7.4669 0.56328 0.13392 0.34860
0.88000 0.58736 1.7432 7.9081 0.57366 0.12645 0.35006
0.87000 0.55887 1.7135 8.3728 0.58360 0.11943 0.35152
0.86000 0.53125 1.6859 8.8635 0.59315 0.11282 0.35299
0.85000 0.50449 1.6601 9.3829 0.60237 0.10658 0.35448
0.84000 0.47858 1.6359 9.9342 0.61128 0.10066 0.35597
0.83000 0.45353 1.6132 10.5192 0.61988 0.09506 0.35747
0.82000 0.42931 1.5918 11.1426 0.62822 0.08974 0.35898
0.81000 0.40592 1.5715 11.8073 0.63633 0.08469 0.36051
0.80000 0.38335 1.5522 12.5177 0.64425 0.07989 0.36207
0.79000 0.36159 1.5340 13.2782 0.65189 0.07531 0.36360
0.78000 0.34064 1.5166 14.0935 0.65937 0.07095 0.36516
0.77000 0.32046 1.5000 14.9704 0.66667 0.06680 0.36673
0.76000 0.30107 1.4841 15.9129 0.67381 0.06284 0.36833
0.75000 0.28246 1.4689 16.9288 0.68078 0.05907 0.36993
0.74000 0.26458 1.4543 18.029 0.68762 0.05547 0.37154
0.73000 0.24746 1.4404 19.217 0.69425 0.05204 0.37314
0.72000 0.23106 1.4270 20.508 0.70077 0.04876 0.37477
0.71000 0.21541 1.4140 21.909 0.70721 0.04564 0.37643
0.70000 0.20044 1.4016 23.436 0.71347 0.04267 0.37807
0.69000 0.18617 1.3896 25.103 0.71963 0.03984 0.37973
0.68000 0.17260 1.3780 26.923 0.72569 0.03714 0.38142
0.67000 0.15970 1.3668 28.919 0.73164 0.03458 0.38311

0.66000 0.14741 1.3560 31.122 0.73746 0.03213 0.38480
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TABLE 1 (cont.)

T, b =Valb Vi=TVi/b pr=1ve  p¢=1/V} (" +p")

0.65000 0.13580 1.3456 33.541 0.74316 0.02981 0.38649

0.64000 0.12481 1.3354 36.213 0.74884 0.02761 0.38823

0.63000 0.11445 1.3256 39.168 0.75438 0.02553 0.38995

0.62000 0.10468 1.3161 42.446 0.75982 0.02356 0.39169

0.61000 0.09547 1.3069 46.114 0.76517 0.02168 0.39343

0.60000 0.08683 1.2979 50.213 0.77048 0.01992 0.39520

- 0.59000 0.07875 1.2892 54.797 0.77567 0.01825 0.39696

< 0.58000 0.07115 1.2807 59.991 0.78082 0.01667 0.39875

= 0.57000 0.06411 1.2725 65.831 0.78585 0.01519 0.40052

< 0.56000 0.05751 1.2645 72.50 0.79083 0.01379 0.40231

— > 0.55000 0.051580 1.2565 79.83 0.79586 0.01253 0.40419

@) —~ 0.50000 0.027788 1.2203 137.95 0.81947 0.00725 0.41336

M 0.45000 0.013134 1.1881 267.44 0.84168 0.00374 0.42271

- 0.40000 0.0051761 1.1592 610.69 0.86266 0.00164 0.43215

)= O 0.35000 0.0015747 1.1331 1769.4 0.88253 0.00056 0.44155

T @) 0.30000 0.0003525 1.1081 6798 0.90244 0.00015 0.45130
= w
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